初中数学函数教案5篇

时间:
Youaremine
分享
下载本文

为了写好一份教案,我们需要考虑学生的学习兴趣和需求,教案应该具备循序渐进的教学步骤,以帮助学生逐步掌握知识和技能,下面是职场好文网小编为您分享的初中数学函数教案5篇,感谢您的参阅。

初中数学函数教案5篇

初中数学函数教案篇1

一、教学目标:

1、知道一次函数与正比例函数的定义、

2、理解掌握一次函数的图象的特征和相关的性质;

3、弄清一次函数与正比例函数的区别与联系、

4、掌握直线的平移法则简单应用、

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、 一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的'一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1、 写出一个图象经过点(1,- 3)的函数解析式为: 。

2、直线y = - 2x - 2 不经过第 象限,y随x的增大而。

3、如果p(2,k)在直线y=2x+2上,那么点p到x轴的距离是:。

4、已知正比例函数 y =(3k-1)x,,若y随

x的增大而增大,则k是: 。

5、过点(0,2)且与直线y=3x平行的直线是: 。

6、若正比例函数y =(1-2m)x 的图像过点a(x1,y1)和点b(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

9、已知圆o的半径为1,过点a(2,0)的直线切圆o于点b,交y轴于点c。(1)求线段ab的长。(2)求直线ac的解析式。

四、教学反思:

教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问

题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

初中数学函数教案篇2

教学目标

①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。能分清实例中的常量与变量,了解自变量与函数的意义。

②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力。

③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情。在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心。

教学重点与难点

重点:函数概念的形成过程。

难点:正确理解函数的概念。

教学准备

每个小组一副弹簧秤和挂件,一根绳子。

教学设计

提出问题:

1。汽车以60千米/时的速度匀速行驶。行驶里程为s千米,行驶时间为t小时。先填写下面的表,再试着用含t的式子表示s:

t(小时) 1 2 3 4 5

s(千米)

2。已知每张电影票的售价为10元。如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

3。要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积s的式子表示圆半径r?

注:(1)让学生充分发表意见,然后教师进行点评。

(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。

动手实验

1。在一根弹簧秤上悬挂重物,改变并记录重物的质量,

观察并记录弹簧长度的变化,填入下表:

悬挂重物的质量m(kg)

弹簧长度l(cm)

如果弹簧原长10cm,每1kg重物使弹簧伸长0。5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

2。用10dm长的绳子围成矩形。试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)。设矩形的长为xdm,面积为sdm2,怎样用含x的式子表示s?

注:分组进行实验活动,然后各组选派代表汇报。

通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息。

探究新知

(一)变量与常量的概念

1。在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程。其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的。在一个变化过程中,数值发生变化的量,我们称之为变量。也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量。

2。请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量。

3。举出一些变化的实例,指出其中的变量和常量。

注:分组活动。先独立思考,然后组内交流并作记录,最后各组选派代表汇报。

培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力。

(二)函数的概念

1。在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

师生分析得出:上面的每个问题和实验中的两个变量互相联系。当其中一个变量取定一个值时,另一个变量就有惟一确定的值。

2。分组讨论教科书p。7 “观察”中的两个问题。

注:使学生加深对各种表示函数关系的表达方式的印象。

3。一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值。例如在问题1中,时间t是自变量,里程s是t的函数。t=1时,其函数值s为60,t=2时,其函数值s为120。

同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

在人口统计表中,年份x是自变量,人口数y是x的函数。当x=1999时,函数值y=12。52。

巩固新知

下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

1。右图是北京某日温度变化图

2。如图,已知菱形abcd的对角线ac长为4,bd的长在变化,设bd的长为x,则菱形的面积为y= ×4×x

3。国内平信邮资(外埠,100克内)简表:

信件质量m/克 o邮资y/元 o。80 1。60 2。40

注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法。

总结归纳

1。常量与变量的概念;

2。函数的定义;

3。函数的三种表示方式。

注:通过总结归纳,完善学生已有的知识结构。

布置作业

1。必做题:教科书p。18 习题11。1第1题。

2。选做题:教科书p。18 习题11。1第2题。

3。备选题:

(1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

③14、15、16日的日平均温度有什么关系?

④点a表示的是哪天的日平均温度?大约是多少度?

⑤说说这一周的日平均温度是怎样变化的。

(2)如右图所示,梯形上底的长是x,下底的长是15,高是8。

①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数。

②用表格表示当x从10变到20时(每次增加1),y的相应值。

③当x每增加1时,y如何变化?说说你的理由。

④当x=0时,y等于多少?此时它表示的是什么?

(3)研究表明,土豆的'产量与氮肥的施用量有如下关系:

施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

土豆产量(吨/公顷) 15。18 21。36 25。72 32。29 34。03 39。45 43。15 43。46 40。83 30。75

①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数。

②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由。

④简单说一说氮肥的施用量对土豆产量的影响。

设计思想

变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃。因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律。遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力。同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题。还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人。

初中数学函数教案篇3

知识技能目标

1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

2、利用反比例函数的图象解决有关问题。

过程性目标

1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

教学过程

一、创设情境

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

二、探究归纳

1、画出函数的图象。

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

上述图象,通常称为双曲线(hyperbola)。

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数有下列性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k

1、双曲线的两个分支与x轴和y轴没有交点;

2、双曲线的两个分支关于原点成中心对称。

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

三、实践应用

例1若反比例函数的图象在第二、四象限,求m的值。

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1

解由题意,得解得。

例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k0,所以直线与y轴的交点在x轴的上方。解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k

例3已知反比例函数的图象过点(1,—2)。

(1)求这个函数的解析式,并画出图象;

(2)若点a(—5,m)在图象上,则点a关于两坐标轴和原点的对称点是否还在图象上?

分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上。

解(1)设:反比例函数的解析式为:(k≠0)。

而反比例函数的'图象过点(1,—2),即当x=1时,y=—2。

所以,k=—2。

即反比例函数的解析式为:。

(2)点a(—5,m)在反比例函数图象上,所以,

点a的坐标为。

点a关于x轴的对称点不在这个图象上;

点a关于y轴的对称点不在这个图象上;

点a关于原点的对称点在这个图象上;

例4已知函数为反比例函数。

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当—3≤x≤时,求此函数的最大值和最小值。

解(1)由反比例函数的定义可知:解得,m=—2。

(2)因为—2

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;

当x=—3时,y最小值=。

所以当—3≤x≤时,此函数的最大值为8,最小值为。

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

(1)写出用高表示长的函数关系式;

(2)写出自变量x的取值范围;

(3)画出函数的图象。

解(1)因为100=5xy,所以。

(2)x>0。

(3)图象如下:

说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

四、交流反思

本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

1、反比例函数的图象是双曲线(hyperbola)。

2、反比例函数有如下性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k

五、检测反馈

1、在同一直角坐标系中画出下列函数的图象:

(1);(2)。

2、已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当时,y的值;

(3)当x取何值时,?

3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

4、已知反比例函数经过点a(2,—m)和b(n,2n),求:

(1)m和n的值;

(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1

初中数学函数教案篇4

教学目标:

1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围.

3、会求函数值,并体会自变量与函数值间的对应关系.

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.

5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.

教学重点:了解函数的意义,会求自变量的取值范围及求函数值.

教学难点:函数概念的抽象性.

教学过程:

(一)引入新课:

上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.

生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.

2、为迎接新年,班委会计划购买100元的`小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.

解:1、y=30n

y是函数,n是自变量

2、n是函数,a是自变量.

(二)讲授新课

刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.

例1、求下列函数中自变量x的取值范围.

(1)(2)

(3)(4)

(5)(6)

分析:在(1)、(2)中,x取任意实数,与都有意义.

(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.

同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.

第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零.的被开方数是.

同理,第(6)小题也是二次根式,是被开方数,

小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使函数成立的自变量的取值范围.二次根式的问题也与次类似.

但象第(4)小题,有些同学会犯这样的错误,将答案写成或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里与是并且的关系.即2与-1这两个值x都不能取.

例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.

(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;

(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.

解:(1)

(x是正整数,

(2)若变速车的辆次不小于25%,但不大于40%,

则收入在1225元至1330元之间

总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.

对于函数,当自变量时,相应的函数y的值是.60叫做这个函数当时的函数值.

例3、求下列函数当时的函数值:

(1)————(2)—————

(3)————(4)——————

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应.以此加深对函数的理解.

(二)小结:

这节课,我们进一步地研究了有关函数的概念.在研究函数关系时首先要考虑自变量的取值范围.因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值.另外,对于反映实际问题的函数关系,要具体问题具体分析.

作业:习题13.2a组2、3、5

今天的内容就介绍到这里了。

初中数学函数教案篇5

一、目的要求

1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析

1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

三、教学过程

复习提问:

1、什么是函数?

2、函数有哪几种表示方法?

3、举出几个函数的例子。

新课讲解:

可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

(3)在这些函数式中,表示函数的自变量的.式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的层层设问,最后给出一次函数的定义。

一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

对这个定义,要注意:

(1)x是变量,k,b是常数;

(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是(一定)

需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

课堂练习:

教科书13、4节练习第1题.

初中数学函数教案5篇相关文章:

初中数学工作计划优秀8篇

初中数学工作计划精选8篇

初中数学教师年度个人总结7篇

初中数学工作年度总结7篇

初中数学七年级教学总结6篇

初中数学工作年度总结精选6篇

初中数学教研工作计划优质6篇

初中数学工作计划参考7篇

初中数学教师工作个人总结6篇

初中数学教学总结范文7篇

初中数学函数教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
120251