具有启发性的教案能够激发学生的学习动力和求知欲望,写教案是教师个人教学风格和特点的体现,下面是职场好文网小编为您分享的数学比例教案5篇,感谢您的参阅。
数学比例教案篇1
教学内容: 按比例分配
教学目标:
1、使学生理解按比例分配的意义。
2、掌握按比例分配应用题的特征及解题方法。
3、培养学生应用所学知识解决实际问题的能力。
教学重点:
掌握按比例分配应用题的特征及解题方法。
教学难点:
按比例分配应用题的实际应用。
教学过程:
一、复习引入
1、填空
已知六年级1班男生人数和女生人数的比是:3:2。
(1)男生人数是女生人数的( )
(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )
(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )
(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )
(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )
(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )
2、口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
口答:100÷2=50(平方米)
提问:这是一道分配问题,分谁?(100平方米)
怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?
这样分还是平均分吗?
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。(板书:分配)
二、讲授新课
1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”
2、提问:分谁?(100平方米)怎么分?(按3 :2分)
求的是什么?(求二年级1班的保洁区是多少平方米?六年级1班的保洁区是多少平方米?)
3、思考:由“如果按3 :2分配”这句话你可以联想到什么?
(1)六年级的保洁区面积是二年级的3/2倍
(2)二年级的保洁区面积是六年级的2/3
(3)六年级的保洁区面积占总面积的3/5
(4)二年级的保洁区面积占总面积的2/5
… …
小组汇报结果
4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?
方法一、3+2=5 100÷5=20(平方米)
20×3=60(平方米) 20×2=40(平方米)
方法二、3+2=5 100× 3/5=60(平方米)
100× 2/5=40(平方米)
方法三、100÷(1+2/3 )=60(平方米)
60× 2/3=40(平方米)或100-60=40(平方米)
方法四、100÷(1+3/2 )=40(平方米)
40× 3/2=60(平方米)或100-40=60(平方米)
5、比较思路:这几种方法中,你认为哪种方法好?为什么?
(第二种,思路简捷,计算简便)说说第二种方法的思路?
①求出总份数
②各部分数占总份数的几分之几?
③按照求一个数的几分之几是多少的方法解答。
6、这道题做得对不对呢?我们怎么检验?
①两个班级的面积相加,是否等于原来的总面积。
②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2
7、练习
一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3 :2。两种作物各播种多少公顷?
8、教学例3学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(1)讨论:这道题与前面所做的题有什么区别?
分配什么?按照什么来分?
怎样计算各班栽的棵数占总棵数的几分之几?
(2)学生独立解题
①三个班的总人数:47+45+48=140(人)
②一班应栽的棵数:280× 47/140=94(棵)
③二班应栽的棵数:280×45/140 =90(棵)
④三班应栽的棵数:280× 48/140=96(棵)
答:一班、二班、三班各应栽94棵、90棵、96棵。
9、小结:观察我们今天学习的两个例题有什么共同特点?
(已知总数量、各部分量的比,求各部分量)
怎么解答?
(先求总份数,各部分量占总数量的几分之几,最后求各部分量)
我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题,
板书(补充课题):按比例分谁?怎么分?
板书:把一个数量按照一定的比来进行分配。
三、巩固练习
1、六年级(2)班共有42人,男、女人数的比是3:4,男、女生各有多少人?
2、一个三角形三条边的长度比是3 :5 :4。这个三角形的周长是36厘米,三条边的长度分别是多少厘米?
(1)还是按比例分配问题吗?(2)如果是四个数的连比你还会解答吗?
3、一个长方形周长是20厘米,长与宽的比是7 :3,求长与宽各是多少厘米?
7+3=10 20×7/10=14(厘米) 20×3/10=6(厘米)
4、思考:平均分是不是按比例分配的应用题?按照几比几分配的?
四、课堂小结
今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?
五、课后作业
练习十三 2、3、4、6
反思:
一、挖掘教材的趣味性、现实性,激发学生学习兴趣
“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。” 也就是说,当数学和儿童的现实生活密切结合时,数学才是活的,富有生命力的,才能激发儿童学习数学的兴趣。“我班的保洁区面积如何分配”这种贴近学生生活又有一定挑战性的实际例题,不仅能调动学生学习的积极性,而且能培养学生解决实际问题的能力。而且这种学生熟悉的生活素材演绎的问题情境,能使他们真正体验到数学不是枯燥空洞的,不是高深莫测的,数学就在自己身边,是实实在在的。
二、挖掘教材的开放性、挑战性,激励学生创新
现行教材是课程改革过程中的过渡性教材,其中绝大部分的数学问题都是必要条件的问题,探索性、思考性和现实性的数学教材显得比较薄弱,教学中,需要教师补充一些具有开放性、挑战性的学习材料,适当让学生接触一些开放性的问题,培养学生的创新意识。开放性学习材料,除了引进有多余条件或条件不充分的问题,还要逐步引进在解决问题的方式、方法上以及答案上开放的问题,留给学生充分的思维空间和选择余地,激励学生去发现、去创新,来弥补教材不足
“按“3 :2分配”你读懂了什么?”这种开放的问题情境,给学生创造了自由发展的更大空间,满足学生的数学学习需求,能使他们真正体验到数学不是枯燥空洞的。再次验证了只有学生积极投入的课堂,才是真正充满生机和活力的课堂。
三、挖掘教材的问题性、情境性,培养学生多角度、个性化解决问题
教材呈现的方式是教材内容的表现形式,也是课堂教学教与学的载体,而同样的教学内容,如果用不同的呈现方式,就会产生不同的教学效果。为取得更好的教学效果,需要我们教师在呈现教材时,为学生创设一种良好的思维情境。一个好的问题情境,会使学生产生困惑和好奇心,能迅速地把学生的注意力吸引到教学活动中,使学生产生浓厚的学习兴趣和强烈的求知欲,从而使学生自觉、兴奋地投入到加深练习中,学习和探求新知识的教学活动中。同样是5:2的条件变换另一个条件,就能解决更多不同的问题,“还能怎样变换呢?”的悬念,这种诱惑力,激发了学生探求和解决问题的浓厚兴趣,将学生自然地带进了新知的探究中。这个例子再次告诉我们:小学数学教学中,教师要重视为教材创设问题情境,让学生在情境的引导下,积极主动探索和追求,来获取知识,发展能力,培养情感,从而让我们的“教材”成为我们学生真正喜欢的“学材”。
数学比例教案篇2
教学内容:人教版六年制小学数学第十二册p95-99页内容。
教学目标:
1、情感目标:在复习活动中让同学体验数学与生活实际的密切联系,培养同学的数学应用意识,激发同学胜利学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。
2、能力目标:通过小组合作整理知识框架,提高学习的系统性,培养同学归纳、总结等自我复习能力和团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。
3、知识目标:
(1)使同学进一步掌握比和比例的意义、性质,能正确迅速地解比例、化简比和求比值。
(2)进一步理解比例尺的意义,能应用比例尺的知识求出平面图的比例尺以和根据比例尺求图上距离和实际距离。
教学重点:理解比和比例的意义、性质,掌握关于比和比例的一些实际运用和计算。
教学难点:能理清知识间的联系,建构起知识网络。
设计思路:
担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,保守的复习课让习题一道道出现,让同学仅仅停滞在"会"的目标上,这复习课究竟应该如何去上好,应该如何让同学感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,同学自身组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为同学的组织者,引导者和合作者,而不是课堂上的"权威"?本着"体现新理念,用活教材,练活习题,激活课堂"的思想,针对本节课的教学目标,我采用让同学分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让同学在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。
课前准备:
1、把同学分成四大组,让同学给自身组取名(如精灵队、快乐队等),把比和比例分成"比和比例的'意义"、"比和比例的性质"、"求比例和化简比"、"比例尺"四大块,让每一组抽签确定本组的一个研究主题,然后分组研究本局部的知识包括哪些我们需要掌握的内容,有哪些重点和难点,最后拟定五个问题。要求这五个问题反映本组全体同学的水平,它们要能基本概括你们所研究主题的全部内容以和重点难点,而且为了本组能取得好成果,提出的问题要有价值,要有一定的考虑性。然后依次向其它小组提问,请他们作答。
2、教师准备地图一张、投影片、小黑板若干。
3、每一小组有一信封,信封内装有比和比例各局部知识名称和一张白纸。
数学比例教案篇3
教学内容:p50第3——8题,正反比例关系练习。
教学目的:进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。
教学过程:
一、揭示课题
二、基本知识练习
1、正、反比例意义
提问:什么叫正比例关系,什么叫反比例关系?用字母式子怎样表示正、反比例的关系?判断成正比例或反比例关系的关键是什么?
2、练:950第4题。
先说出数量关系式,再判断成什么比例?
三、综合练习
1、练习:p50第5题
想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?
口答并说说怎样想的'。
2、做练习十二第6题、第7题
第7题评讲时追问:在一个乘法关系式里,什么情况下某两个数成反比例:什么情况一某两个数或正比例?
3、做第8题
提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?
四、延伸练习
下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?
1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。
2、某工厂3小时织布1800米,照这样计算,8小时织布x米。
五、课堂
通过这节课的练习,你进一步认识和掌握了哪些知识?
六、作业
?练习与测试》p25第五、六题。
数学比例教案篇4
教学目标:
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:
对于与正比例函数概念的理解.
教学难点:
根据具体条件求与正比例函数的解析式.
教学方法:
结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的.相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式.
一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的.特别地,当b=0时, 就成为( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
数学比例教案篇5
教学目标
1.理解反比例的意义。
2.能根据反比例的意义,正确判断两种量是否成反比例。
3.培养学生的抽象概括能力和判断推理能力。
教学重点
引导学生理解反比例的意义。
教学难点
利用反比例的意义,正确判断两种量是否成反比例。
教学过程
一、复习准备(演示课件:成反比例的量)
1.下表中的两种量是不是成正比例?为什么?
购买练习的本数(本)
1
2
4
6
9
总价(元)
0.80
1.60
3.20
4.80
7.20
2.回忆:成正比例的量有什么特征?
二、新授教学
(一)引入新课
我们已经学习了常见数量关系中成正比例关系的量的特征。这节课我们继续研究常见的数量关系中的另外一种特征成反比例的量。
教师板书:成反比例的量
(二)教学例4(演示课件:成反比例的量)
1.出示例4,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数加工时间=零件总数
3.小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(三)教学例5(演示课件:成反比例的量)
1.出示例5,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(四)比较例4和例5,概括反比例的意义。
1.请你比较例4和例5,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3.如果用字母 和 表示两种相关联的量,用 表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书:= (一定)
(五)教学例6(演示课件:成反比例的量)
1.出示例6,教师提问:
(1)每天播种的公顷数和要用的天数是不是相关联的量?
(2)每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?
(3)播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么?
2.思考:播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?
三、课堂小结
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
四、课堂练习
(一)判断下面每题中的两个量是不是成反比例,并说明理由。
1.路程一定,速度和时间。
2.小明从家到学校,每分走的速度和所需时间。
3.平行四边形面积一定,底和高。
4.小林做10道数学题,已做的题和没有做的题。
5.小明拿一些钱买铅笔,单价和购买的数量。
(二)你能举一个反比例的例子吗?
五、课后作业
判断下面每题中的两种量是不是成反比例,并说明理由。
1.煤的总量一定,每天的烧煤量和能够烧的天数。
2.种子的总量一定,每公顷的播种量和播种的公顷数。
3.李叔叔从家到工厂,骑自行车的速度和所需的时间。
4.华容做12道数学题,做完的题和没有做的题。
5.生产电视机的总台数一定,每天生产的台数和所用的天数。
6.长方形的面积一定,它的长和宽。
7.小林拿一些钱买练习本,单价和购买的数量。
六、板书设计
成反比例的量
例4.每小时加工数加工时间=零件总数(一定)
例5.每本页数装订本数=纸的总页数(一定)
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。它们的关系叫做反比例关系。
= (一定)
例6.因为:每天播种的公顷数天数=播种的总公顷数(一定)
所以:每天播种的公顷数和要用的天数成反比例。
数学比例教案5篇相关文章: